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Abstract

Aim: Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized
by motor and non-motor symptoms. The diagnosis and management of PD have been
significantly impacted by recent advancements in epidemiology, genetics, biomarkers, and
therapeutic approaches. This study aimed to identify potential risk factors for PD and
assess their contribution to PD risk using the Explainable Boosting Machines (EBM)
model, a machine learning approach.
Materials and Methods: The dataset utilized in this research, accessible to researchers,
comprised 2105 individuals and included 32 clinical and laboratory predictors across vari-
ous categories, along with a response feature indicating PD diagnosis (yes/no). Statistical
analyses, such as the Mann-Whitney U and Pearson chi-square tests, were conducted to
determine significant differences between PD diagnosis groups.
Results: The study identified several predictors as significantly different between the
groups, including age, sleep quality, diabetes, depression, tremor, rigidity, bradykinesia,
postural instability, and scores from assessment scales like UPDRS, MoCA, and Functional
assessment. The EBM model effectively classified PD cases, demonstrating high accuracy,
sensitivity, specificity, AUROC, and positive-negative predictive values. The "UPDRS"
score emerged as the most influential predictor in the model, with higher scores indicating
an increased risk of PD.
Conclusion: Future research, with more samples and predictors, can delve deeper into
the interaction of these predictors and explore the potential for developing targeted inter-
ventions for PD prevention and management.

Copyright © 2024 The author(s) - Available online at www.annalsmedres.org. This is an Open Access article distributed
under the terms of Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Introduction
Parkinson’s disease (PD) is a degenerative ailment of the
nervous system that worsens with time. It is marked by
a combination of symptoms affecting movement and other
bodily functions. The diagnosis and management of PD
have been greatly influenced by recent progress in epidemi-
ology, genetics, biomarkers, and therapy techniques. PD
has a prevalence rate of 1-2 cases per 1,000 individuals,
and this rate tends to rise as people become older [1].
Advancements in the study of PD have had a significant
influence on how we diagnose and treat the condition. This
emerging area of study explores the fundamental processes
(pathophysiology) of the illness, the circumstances that
cause it (etiology), and possible treatments. An impor-
tant objective is to identify dependable biomarkers for PD.
These have great potential for aiding in the early detec-
tion of diseases, monitoring how they develop over time,
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and assessing the effectiveness of treatments. Research on
biomarkers, especially in biofluids such as cerebrospinal
fluid (CSF) and blood, has made substantial progress.
These indicators can identify the present stage of a disease,
estimate the speed at which it will proceed, and perhaps
predict the future clinical course [2, 3].

Significantly, the progress in machine learning and deep
learning algorithms is being used to enhance the preci-
sion of diagnoses and forecast how patients will respond
to certain treatments [4]. These innovative methods pro-
vide a look into the future of detecting and diagnosing the
early stages of PD. The implications of the epidemiological
discoveries go beyond a more profound understanding of
PD. They facilitate the advancement of customized med-
ical approaches, customizing treatment tactics based on
the specific characteristics of each patient. Moreover, these
breakthroughs show great potential for developing disease-
modifying treatments that can decelerate or completely
stop the evolution of PD, eventually reducing the substan-
tial burden that this neurodegenerative sickness imposes
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on people and healthcare systems [5-7].
Although the exact cause of Parkinson’s disease is not
known, certain factors are thought to increase the risk of
the disease: age, gender, genetic factors, environmental
factors, consumption of dairy products, melanoma history
and traumatic brain injury [8].
This study aimed to predict possible/candidate risk fac-
tors for PD and determine their contribution to PD risk by
using the Explainable Boosting Machines (EBM) model,
which is one of the machine learning models that has re-
cently been used in the health field.

Materials and Methods
Data set
In this study, the "Parkinson’s Disease Dataset Anal-
ysis" (https://www.kaggle.com/datasets/rabieelkharoua/
parkinsons-disease-dataset-analysis), [9] which is open ac-
cess to researchers in the Kaggle environment, was used.
Since this study was conducted on a publicly available clin-
ical data set, Ethics Committee approval is not required.
The data set, which includes candidate risk factors and
assessment scale scores for PD prediction, consisted of
2105 individuals, 32 clinical-laboratory predictors (in 6
sub-categories, presented in Table 1), and one response
feature (PD Diagnosis; Yes/No). The gender distribu-
tion of the participants was 1068 (50.7%) males and 1037
(49.3%) females. The age distribution of all participants
was 69.6±11.6 years.

Basic statistical analyses
Shapiro-Wilk normality test was first applied for the quan-
titative predictors in the data set. Mann-Whitney U and
Pearson chi-square tests were applied according to predic-
tor types to determine whether there was a statistically sig-
nificant difference between PD diagnosis groups. p≤0.05
type I error level was accepted and statistical analyses were
performed in R (version 4.1.2) software.

Predictor preprocessing for modeling
Outlier analysis was applied for the numerical estimators
in the data set without missing data. Multiple Imputa-
tion by Chained Equations (MICE) based LightGBM algo-
rithm was applied for outlier detection. The optimal pre-
dictor selection process was applied to determine the ones
that contribute the most to the modeling among the 32
estimators in total. For this task, XGBoost-based permu-
tation importance analysis was performed. Python (ver-
sion 3.10.0) software and the miceforest [10] and PiML [11]
libraries were used in this stage.

EBM modelling
The EBM [12] is a sophisticated machine learning model
that effectively models patterns in data sets and also in a
way that outputs can be easily interpreted. EBM com-
bines decision trees, generalized additive linear models,
and boosting techniques to construct explainable predic-
tions which allow researchers to understand the model’s
decision-making process. It also can improve model pre-
diction and interpretation performance by automatically

detecting and incorporating the binary interaction terms
of the predictors into the model. The EBM model can ex-
plain the contribution to model performance on a sample
basis. Explainable sample-based estimates are important
in the context of disease prediction because the role of indi-
vidual effects on model performance can be observed and,
more importantly, understanding the model’s individual
estimates on a person-by-person basis helps detect errors
and improve the model. By understanding why some esti-
mates are wrong, the model can be improved. EBM, which
has recently been frequently used especially in health ap-
plications, is preferred by researchers due to its high pre-
diction performance, explainable outputs, and reasonable
modeling time. EBM can be expressed in the following
form:

g(E[y]) =β0+
∑ ´

j
(xj)

Where g is the link function that fits the additive model to
regression or classification.

´
j

is feature function is learnt
by EBM using boosting technique.
To test the learning performance of the EBM model, the
dataset was randomly divided into two parts, 80% training
and 20% testing. The training data set was used to train
the EBM model, while the test data set was used to test
model prediction performance. The processes at this stage
were realized using the InterpretML [12] library in Python.
Evaluation of model performance
Accuracy, sensitivity, specificity, positive-negative predic-
tive values, and area under the Receiver Operating Char-
acteristics (ROC) curve (AUROC) metrics were used to
evaluate the model classification performance. These are
metrics that are often used in binary classification tasks
and more details can be found in the following study [13].

Results
The descriptive statistics of the predictors according to the
distribution of PD and related p-values are presented in
Table 1. According to the table, there is a statistically sig-
nificant difference between the diagnostic groups in terms

Figure 1. The selected predictors by the XGB-based
Feature Importance feature selection algorithm.
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Table 1. Descriptive and inferential statistical outputs for the predictors.
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Table 2. Classification matrix for the prediction results
of the EBM model.

Model prediction (PD)
Actual diagnosis (PD)

Total
No Yes

No 134 16 150
Yes 16 255 271

Total 150 271 421

Note: Cells with bold numbers true classification, cells with italic
numbers represent misclassification.

Table 3. Classification performance metrics of the EBM
model.

Metric Value (95% CI*)

Accuracy 0.92 (0.89 – 0.95)
Sensitivity 0.94 (0.90 – 0.97)
Specificity 0.89 (0.83 – 0.94)
Positive Predictive Value 0.94 (0.91 – 0.96)
Negative Predictive Value 0.89 (0.84 – 0.93)
AUROC 0.95 (0.92 – 0.97)

*: Confidence interval.

Figure 2. Predictor importances (a), line and density
plots of how the PD prediction was affected by changes
in the values of the “UPDRS” (b) and “Functional assess-
ment” predictors.

of “Age” in the "Demographic" category. In the "Lifestyle
indicators" category, there is a significant difference in
terms of “Sleep quality” predictor. In the "Patient history"

Figure 3. Predictors contributing to the classification of
two PD-positive (a) and PD-negative (b) samples by the
EBM model.

group, “Diabetes” and “Depression” predictors are statisti-
cally significant. In the "Symptoms" category, significant
differences were found for the predictors “Tremor”, “Rigid-
ity”, “Bradykinesia” and “Postural instability”. Significant
differences were found between the diagnostic groups for
all predictors (“UPDRS”, “MoCA” and “Functional assess-
ment”) in the "PD Assessment measures" category.
There were no missing values in the data set. In ad-
dition, the LightGBM-based MICE algorithm was ap-
plied for outlier detection in the quantitative predictors,
but no outlier was detected. After applying the predic-
tor selection method, 7 out of 32 predictors (“UPDRS”,
“Tremor”, “Functional assessment”, “MoCA”, “Rigidity”,
“Bradykinesia” and “Postural instability”) were selected by
the XGB-based Feature Importance feature selection algo-
rithm (Figure 1).
Table 2 shows the classification matrix of the trained EBM
model on the test dataset. The EBM model correctly clas-
sified 389 and misclassified 32 out of the test dataset of 421
participants.
Table 3 presents the evaluation of the PD classification
performance of the EBM model with various metrics. The
values were obtained using the classification matrix pre-
sented in Table 2. The 95% confidence intervals of the
metrics were also reported.
In Figure 2 (a), the importance levels (weighted mean ab-
solute score) of the predictors used in training the EBM
model were presented. According to the related plot, the
“UPDRS” was found to be the predictor with the highest
feature importance score. In Figure (a), the predictors re-
ported in binary with “&” symbol are the interaction terms
of the related predictors. Figures 2 (b) and (c) show line
and density plots of how the PD prediction is affected by
changes in the values of the two predictors with the highest
feature importance scores. Increases in the “UPDRS” score
beyond a value of around 50 appear to increase the risk
of PD. Also, it is noticed that the risk of PD decreases at
values after about 5 of the “Functional assessment” score.
Figure 3 shows the sample-wise predictions of the EBM
model and the relative contribution of the predictors to
predictions. Figure 3 (a) shows the sample with positive
PD in the actual data (Actual class: 1) and predicted by
the EBM model as positive PD (Predicted class: 1). The
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probability of PD positive for the relevant sample was esti-
mated at 0.98. It is noticed that “UPDRS” and “Functional
assessment“are the first two predictors that play an impor-
tant role in the positive prediction of the EBM model. For
this sample, the “UPDRS” value is calculated as 180.74
and the “Functional assessment” value is calculated as 2.7.
Figure 3 (b) shows the sample with negative PD in the
actual data (Actual class: 0) and predicted by the EBM
model as positive PD (Predicted class: 0). The probabil-
ity of PD negative for the relevant sample was estimated
at 0.99. For this sample, the “UPDRS” value was calcu-
lated as 1.87 and the “Functional assessment” value was
calculated as 8.68.

Discussion

In this study, statistical inference methods and EBM, an
explainable machine learning model, were used together
to investigate the predictive ability of various categories
of predictors in predicting PD. In this context, firstly, it
was investigated whether there was a statistically signifi-
cant difference between PD diagnosis groups in terms of
32 predictors in total. At the end of this process in which
Mann-Whitney U and Pearson chi-square tests were used,
significant differences were found between PD diagnosis
groups in terms of “Age”, “Sleep quality”, “Diabetes”, “De-
pression” “Tremor”, “Rigidity”, “Bradykinesia”, “Postural
instability”, “UPDRS”, “MoCA”, and “Functional assess-
ment” predictors.

The fact that the median age in the PD positive group
was significantly higher than the median age in the PD
negative group reveals that age is a natural risk factor
for PD, which is also known as an aging-associated dis-
ease. Sleep quality score was significantly lower in the
PD-positive group. A meta-analysis study [14] conducted
in 2020 revealed that individuals with PD have poor sleep
quality. However, the calculated p-value close to the type-I
error level and the median score difference of 0.77 between
the two groups may suggest that sleep quality is a low
effect size predictor of PD.

When analyzed in terms of the presence of diabetes, there
was a higher proportion of samples with diabetes in the
PD-positive group compared to the PD-negative group.
Studies found that people with type 2 diabetes have a
higher risk of developing Parkinson’s disease [15, 16]. Al-
though statistically significant, it was observed that the
“Diabetes” predictor was not selected by the predictor se-
lection phase. This may be attributed to the low effect
size (Phi coefficient = 0.057) of the “Diabetes” predictor.
The presence of depression is one of the risk factors for
PD, with one study showing that the risk of developing
PD was 3.24 times higher in patients with depression [17].
However, similar to the “Diabetes” predictor, it was not
entered into the model in the predictor selection analyses,
possibly because it is a low effect size (Phi coefficient =
0.059) predictor.

When Tables 2-3 are considered together, it is seen that
the EBM model shows an acceptable classification perfor-
mance. In the model where 32 out of 421 individuals were
classified incorrectly, it is seen that all performance metrics
had values of 0.89 and above.

In terms of the “Tremor” predictor, a significant difference
was found between the groups and it was the 3rd most im-
portant predictor contributing to the PD diagnosis classifi-
cation of the EBM model. Tremors in various parts of the
body are one of the most prominent visual symptoms of
PD and that severely reduce the quality of life in patients
[18]. In addition to tremor being an important marker of
PD, it is also important to identify the source of tremor.
For this, machine learning-driven approaches have been
used in the classification of essential/parkinsonian tremor
[19, 20].
Along with “Tremor”, previous studies revealed that
“Rigidity”, “Bradykinesia” and “Postural instability” are
classical and important markers of PD that are considered
in clinical assessment [21-23]. The outputs from the EBM
model showed that after "Tremor", these 3 predictors were
the symptoms that contributed most to the classification
performance of the model and the increased risk of PD. In
addition, as can be observed in Figure 2 (a), the binary
interactions of these symptoms were also included in the
training process by the EBM model, but it was observed
that the single effects of these symptoms contributed more
to the model prediction performance.
UPDRS [24] is a comprehensive scale used commonly to
assess the severity and progression of Parkinson’s disease.
This scale assesses the different dimensions of the PD (mo-
tor, behavioral, sensory, etc.), providing physicians and re-
searchers with a clearer point of view. In this study, PD
diagnostic groups were found to be statistically different in
terms of UPDRS. In addition, UPDRS was the predictor
that contributed the most to the classification performance
of the EBM model. Although there is no universal cut-off
point for total UPDRS score in predicting PD, when con-
sidered together with other risk factors examined in this
study, it can be stated that the risk of PD increases in
samples with a total score of 50 and above (Figure 2 (b)).
PSFS [25] is a subjective measurement tool used to as-
sess a patient’s functionality in activities of daily living.
It is especially preferred in individuals with musculoskele-
tal problems [26]. Furthermore, studies have revealed that
the PSFS is an informative and useful tool for PD assess-
ment [27, 28]. As can be noticed from the EBM results,
individuals with a PSFS total score of 5 and above were
found to have an increased risk of PD (Figure 3 (c)).
The MoCA [29] scale is a test that can be used for early
diagnosis of PD dementia by detecting cognitive impair-
ments (such as mild memory loss, and attention deficit)
[30]. A statistically significant difference was observed be-
tween PD diagnosis groups in terms of total MoCA score.
When evaluated in terms of the EBM model, the model
was the 5th predictor to add to the prediction perfor-
mance.

Conclusion

In this study, the EBM model was employed to identify po-
tential risk factors for PD and assess their contribution to
PD risk. The EBM model effectively classified PD cases,
demonstrating high accuracy, sensitivity, specificity, and
positive-negative predictive values. The "UPDRS" score
emerged as the most influential predictor in the model,
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with higher scores indicating an increased risk of PD. Addi-
tionally, the study highlighted the importance of other pre-
dictors like tremor, functional assessment, MoCA, rigidity,
bradykinesia, and postural instability in PD prediction.
Our study has some limitations, including the relatively
low sample size and the lack of an external validation co-
hort.
Future research, with more samples and predictors, can
delve deeper into the interaction of these predictors and
explore the potential for developing targeted interventions
for PD prevention and management. In addition, the gen-
eralizability and reliability of the EBM model’s outputs
may increase with multicenter studies.
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